A new proof of Nishioka’s theorem in Mahler’s method

نویسندگان

چکیده

In a recent work [3], the authors established new results about general linear Mahler systems in several variables from perspective of transcendental number theory, such as multivariate extension Nishioka’s theorem. Working with functions and different transformations leads to complications, including need prove vanishing theorem use tools ergodic Ramsey theory Diophantine approximation (e.g., variant p-adic Schmidt subspace theorem). These complications make proof main proved [3] rather intricate. this article, we describe our approach special case one variable. This new, elementary, self-contained theorem, well lifting more recently obtained by Philippon [23] [1]. Though strategy remains same turns out be greatly simplified. Beyond its own interest, hope that reading article will facilitate understanding [3].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

A New Proof of Bartholdi’s Theorem

We give a new proof of Bartholdi’s theorem for the Bartholdi zeta function of a graph.

متن کامل

A New Proof of Bronshtein’s Theorem

We give a new self-contained proof of Bronshtein’s theorem, that any continuous root of a Cn−1,1-family of monic hyperbolic polynomials of degree n is locally Lipschitz, and obtain explicit bounds for the Lipschitz constant of the root in terms of the coefficients. As a by-product we reprove the recent result of Colombini, Orrú, and Pernazza, that a C-curve of hyperbolic polynomials of degree n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2023

ISSN: ['1631-073X', '1778-3569']

DOI: https://doi.org/10.5802/crmath.458